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Abstract. The electronic states of a ondimensional tweband tight-binding model 
in a uniform electric field, in which the strength of interband coupling is varied, 
are studied. Eigenenergies, densities of states and wavefunctions are numerically 
computed for a finite length of the system in order to see the transition f h m  Bloch 
bands at low electric fields to the eigenstates at high fields explicitly. The results for 
high electric fields indicate the existence of sets of Stark ladders arising from different 
bands even when iuterband coupling is strong. 

1. Ixitroduction 

The energy spectra of an electron in a crystal under a uniform electric field have 
been known to be distinctly different from those without an electric field. In a one- 
dimensional single-band tight-binding model, Katsura et  a/ [l] have shown that the 
wavefunction is represented by a Bessel function and the energy eigenvalue is given by 

E ( n )  = n F  + constant (1.1) 

where n is an integer and F = eEa with -e the electron charge, E the electric field 
along the chain and a the lattice constant. Subsequently, Kane I21 constructed the 
wavefunction by the superposition of the Bloch wavefunctions for a general shape of 
a single band, and obtained exactly the same spectra as in (1.1). The wavefunctions 
for both models are very similar in that they are localized with a localization length 
of the order of 

X = (W/ZF)a (1.2) 

where W is the bandwidth concerned. Unfortunately, however, these pioneering results 
were not widely appreciated for a long time. Wanner [3-51 was the first to point out 
that the eigenenergies, in general, have the structure (1.1) because of the periodicity 
of the crystal potential. Since then the discrete spectra (1.1) have been called Stark 
ladders. Several authors, however, raised doubt about Wannier’s proof. In particular, 
Zak [6, 71 argued that, tlie interband couplings would completely destroy the discrete 
character of the spectra and that the spectra might be continuous instead. Saitoh [SI 
has discussed whether Stark ladders are a physically meaningful concept as resonant 
levels and has sliown that the oscillatory behaviour of the conductivity observed in 
ZnS crystals by Maekawa [9] can indeed be understood on the the basis of Stark 
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ladders. This line of argument was subsequently developed by Sawaki and Nishinaga 
[IO, 111. Later Avron et  a /  [12] proved mathematically that the energy spectra of the 
Bloch electrons in an electric field are continuous when an infinite number of bands 
are considered, and that discrete Stark ladders do not exist. This, however, does not 
necessarily exclude the existence of resonance levels in Stark ladders. Indeed, Avron 
ef ~l [12] have shown that the spectra are point-like, i.e. discrete, when interband 
coupling among a finite number of bands is considered. 

Clearly one of the confusions about the existence of Stark ladders arises from the 
consideration of an infinite crystal, where the electric field potential is not bounded. 
For an infinite crystal, a zero electric field could be a singularity of the spectra, and a 
smooth transition from ordinary Bloch bands to Stark ladders would not be expected. 
This difficulty can be easily overcome by considering a long but finite length of crystal. 
The energy spectra of an electron in a finite length of a linear crystal under an electric 
field were formally solved by Stey and Gusman [l3] within the single-band tight- 
binding model. The eigenenergies and their associated wavefunctions asymptotically 
approach those obtained by Katsura ef a l  as the electric field increases, and they 
are Bloch-electron-like when the electric field is small. The wavefunction, the energy 
spectra and the density ofstates of this system were numerically calculated by Saitoh 
[14], where a smooth transition from a Bloch character to Stark ladders was observed 
for which the potential drop across the crystal was roughly equal to the bandwidth 
W .  Note that the Stark ladders are the exact eigenstates of the system when the 
electric field becomes infinitely large in this model. 

Although it is believed that, when the electric field is large, the general nature of 
the ladder structure may not be destroyed by the inclusion of interband coupling as 
long as the overlap between the wavefunctions belonging to different bands is small, 
it still has to be demonstrated. Fukuyama et al [15] investigated briefly the two-band 
tight-binding model of finite length and concluded that two sets of Stark ladders may 
exist. In their recent article Leo and Mackinnon 1161 numerically investigated a slightly 
different model from that of Fukuyama e t  a l  and reported the existence of Stark 
ladders. With the inclusion of the interband coupling the wavefunction belonging to 
a particular eigenenergy is a mixture of the original s- and p-band wavefunctions, 
but the main portion of the wavefunction is either primarily an  s- or p-state and the 
electron is localized in a particular region. The resulting Stark ladders interpenetrate 
each other. Leo and hlackinnon, however, did not distinguish between the s- and p- 
components of the wavefunction, and presented the sum of the two envelope functions, 
which has no clear physical meaning. Moreover, both models are unphysical from our 
point of view in that the nature of the wavefunctions is not appropriately considered 
and the signs of the matrix elements are not quite correct; the valence band of both 
of the earlier models is electron-like a t  k = 0. 

The structure of the present article is as follows. First we choose the two-band 
tight-binding model, which, we believe, reflects the correct character of the wavefunc- 
tions. Our model is of the direct-bandgap type; namely the top of the valence band 
lies a t  k = 0 and the character is hole-like. Second, by studying a finite length of 
a crystal, the transition of the spectra from being Bloch in character to being Stark 
ladder type can be fully investigated. Finally, the int.erband effects will be studied in 
detail by varying the strengths of interband couplings. 

We will present the two-band tight-binding model in section 2, and present the 
numerical calculations of the wavefunctions, eigenenergies and the density of the states 
in section 3 together with a discussion on the existence of Stark ladders by changing 
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the interband coupling strength. Section 4 is devoted to conclusions. 

2. Model 

We use a one-dimensional tight-binding model, which consists of s and p orbits. The 
Hamiltonian is given by 

where S, and P, are the annihilation operators of the s and p orbits at the nth site, 
es and ep are the on-site energies of the s and p orbits, V, and Vp the transfer integrals 
of the corresponding orbits, Kp the transfer integral between the s and p orbits, F the 
electric potential drop across the unit cell, and 11 is the matrix element of z/u which 
is very small compared with unity. The fifth term results in the interband coupling. 
In setting up the model, terms which are smaller than two-site overlap integrals are 
discarded. Note that the signsof the coupling parameters are different from the models 
of Fukuyama el ai and Leo and Mackinnon. In the following we use the unit system in 
which h, e and U are chosen to be unity, and F will simply be called the electric field. 
Since the last term is small compared with the first two terms and its major effect is 
only to widen the gap between the conduction and valence bands, it will be discarded 
hereafter. The following periodic boundary conditions will be employed here 

sNt l  = sl p N t l  = pl. (2.2) 

When the electric field is absent (F = 0), this Hamiltonian is easily diagonalized and 
the eigenenergies are explicitly written as 

where 

csk = eg - 2K cos k 
epk = Ep - 2vp cos P 

A k = 2Vspsink. 

and k is the wavenumber of an electron 

k = (2?r/N)n ( n  = 0,1,. . . , N  - 1). 
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When the interband coupling rk  is small, the model has the direct gap Eg = Ifs - e p J  
a t  the r point. Examples of the bands for the bandwidths W, = 16, W, = 4 and 
several different interband coupling parameters Kp are given in figure 1. The present 
model is different from those of Fukuyama e f  at (FBF) 1131 and Leo and Mackinnon 
(LM) [14]. The FBF and the LM models give the following dispersion relations 

T h’nwaguehi and M Saifoh 

Ef (k) = f [Csk + Epk & d C , k  - EPk)’ + 4V$] (FBF model) (2.6) 

E &  (k) = f [cSk + cPk - + 4 A i ]  (LM model) (2.7) 

where 

€ s ~ = c ~ - 2 V , c o s k  

cpk = E, - 2Vp cos k 

A, = 2V,, sin k. 

Note that the sign of V, in both the FBF and LM models is different from ours and 
so the form of the bands is very different from those encountered in semiconductors 
in whicli the valence band is hole-like at  the r point. In our model important mixing 
occured between the r points of the conduction and valence bands. In the previous 
two models i t  occured between the conduction r point and the valence X point. 

To illustrate the numerical results, we fix the band parameters to the following 
values: E ,  = 0, cP = -30, V,  = 4 and Vp = 1. These values are chosen somewhat 
arbitrarily to represent the wide-gap semiconductors. Let us first consider the zero- 
field case. The conduction band (the s band) and the valence band (the p band) have 
bandwidths 4 and 16 and a bandgap of 20 for V,, = 0. The interband couplings V,, 
are taken to be 0, 6 and 8.5 which corresponds to the weak, intermediate and strong 
coupling cases, respectively (figure 1). In the cases of Ep = 6 and 8.5, the bands are 
considerably modified from the weak coupling cases and the new van Rove singularities 
will appear. 

In the general case of non-zero electric fields, it is necessary to diagonalize the 
Hamiltonian (2.1) numerically in order to obtain eigenenergies and eigenfunctions. 
This will be performed in the next section. 

3. Results 

In this section numerical calculations of the density of states (DOS) and the eigenfunc- 
tions for non-zero electric fields are given. The DOS is defined by 

1 2 
DOS[E(n)] = - 9 N E(n + 1 )  - E(n - 1)  

where g represents the g-fold degeneracy of the nth energy state, N the total number 
of lattice points, and E(n)  the nth eigenenergy. In the following, the chain length is 
taken to be N = 100. A large N ensures that the results are represented essentially 
by bulk properties. The energy origin is taken to be Eo = f ( N  + 1)F. We define the 
potential drop across the system by 

+ = N F .  (3.2) 
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Figure 1. Energy bands for different interband couplings when the electric field is 
absent. Band parameters are cliosen as V. = 4,Vp = 1, ancl V,, = 0,6 and 8.5 for 
(a), (6) and ( c )  respectively, wlkh correspond to the weak,  iutemiediate and strong 
coupling cases, respectively. 

In figures 2(a), (b)  and (c), the 71 dependence of the eigenenergies for !& = 0 are 
plotted for weak, intermediate and strong electric fields. If the relation between E ( n )  
and n is linear, it means Stark ladders. It is seen that the linear region increases with 
the electric field, and this indicates that the region of Stark ladders depends on the 
strength of the electric field for a finite length of the crystal. This is in contrast to 
the case of an infiuitely long crystal in whidl all the states belong to Stark ladders 
within the tight-binding model. Note that the slope of the line in the central part of 
figures 2 ( b )  and (c) is half of the slope at Loth ends of the line. This will be discussed 
later. 

Figure 3 shows the DOS for a weak field: F = 0.16 (6 = 16), where 4 is equal to 
the width of the s band for F = 0. For V,, = 0 (figure 3 ( a ) ) ,  the DOS displays the 
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n 
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0 
n 

Figure 2. The n dependence of the eigeiienergies for V,p = 0 and (a )  F = 0.16, (a )  
F = 1 and (c )  F = 3. 

two detached bands. The characteristic of eacli band can be understood in terms of 
the picture of two independent bands in  weak fields. The DOS for the lower band is 
flat in the central region indicating the existence of a Stark ladder. But, for the upper 
band, there is no flat region, and therefore the Stark ladder is absent. The reason is 
that the characteristic localization lengths (= (bandwidth)/2F) differ in each band 
because of the difference in bandwidths. Twice the localization length (i.e. the extent 
of the wavefunction) for the s band is equal to the length of the crystal and the s 
component of the wavefunction is extended over the crystal, but for the p component 
twice the localization length is only a quarter of the crystal length and it is localized 
within the crystal. The band gap becomes narrower than the zero-field case because 
each if the band is expanded by the electric field. According to the results from the 
singleband model of Saitoh [14], the electronic states near these band edges have an 
Airy-like spectrum, i.e. the spectrum is characterized by those of the triangle well 
potential. The narrowing of the band gap is related to the Franz-Keldysh effect [17, 
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Figure 3. The DOS far various interband couplings: (a) V., = 0, (a )  Vap = 6 and 
(c )  V,, = 8.5 in the weak eleclric field, wliere F = 0.16 (+ = 16). 

181. Figures 3( a) and (c) show the case of intermediate and strong interband couplings. 
In these cases the DOS becomes asymmetric with respect to the band centre because 
the interband coupling is strong. The flat region in the lower band which indicates 
the existence of a Stark ladder persists as in figure S(a), even though the interband 
coupling becomes stronger. 
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Figure 4. TIE DOS with (a) V,, = 0, ( a )  V,, = 6 aud ( c )  KP = 8.5 for various 
interhand coiiplings iii the Iriglr electric field, where F = 1 (4 = 100). 
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Next, the results for a high field, F = 3, for which the localization lengtlis of the 
wavefunctions for both bands become smaller than the chain length N are shown in 
figure 4. It should be noted here that two bands merge and the band gap disappears. 
It is also seen that the shape of the DOS is independent of coupling strength. The 
DOS has three plateau regions, high in the centre and low at both sides. In the low 
plateau regions at both sides, the DOS has the value 4-l as seen in figure 4. This is 
understood as the energy levels having equal spacing F as shown in figure 5 ( a ) ,  since 

2 1  1 
N 2 F  4' DOS E -- = - (3.3) 

In the central flat region, the energy levels do not, in fact, have equal spacing, but 
a pair of energy levels are equally spaced as shown in figure 5 ( b ) .  The spacing of 
every other level is approximately equal to F .  The DOS in the figure appears to be 
flat because of definition (3.1) which averages large (small spacing) and small (large 
spacing) DOS: 

DOS CI 2/4. (3.4) 

The difference in the DOS values are reflected in the slopes in figures 2 ( b )  and ( c ) ,  as 
mentioned earlier. 

I I I I  - 
F 

F 
U 

I I  
ENERGY 

(b) 

Figure 5. Schematic energy levels in the typical regioiv, of the DOS for figwe 4, 
where ( a )  is the band edge region and ( b )  the band centre region. 

To see the nature of the wavefunctions let us examine a pair of two neighbouring 
levels which are shown in figure 5 ( b ) .  Figure 6 shows an example of the wavefunctions 
belonging to the 60th and 61st levels in the central region offigure 4(c) with VSp = 8.5 
and F = 3 (4 = 300). The wavefunction corresponding to the 60th level is mainly 
s in character and is localized around n M 20 and the wavefunction belonging to the 
61st level has mainly the p character located around n M 30 although the interband 
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Figure 6. Typical wavefunctions of adjacent energy levels in the central flat region 
of figure 4(c)  where Vsp = 8.5 and F = 3(d = 300): ( a )  the wavefunction belonging 
to the 60th eigeiutate with energy E(60) = -75.354; and (a)  the wavefunction 
belonging to the 61st eigenrtate ritb energy E(61)  = -74.646. 

coupling mixes the s and p components. The location of the gravity centre of each 
component is given approximately by 

( n - y ) F = E ( n ) - c ,  ( I = s , p ) .  (3.5) 

Namely, the pair of adjacent energy levels have the character mainlyof the s and of the 
p types, respectively. The next nearest energy distances of %to-s and p-to-p are given 
approximately by F .  This means the energy levels consist of two interpenetrating 
Stark ladders as pointed out by Fukuyama e t  al  and Leo and Mackinnon. The DOS is 
given by the sum of these interpenetrating Stark ladders and the DOS in the central 
region is twice as large as those in the shoulder regions. 

It can be concluded that, when the electric field is applied, the dominant compo- 
nent in the Stark ladders is produced more or less from one particular band, and the 
two types of Stark ladder interpenetrate each other. This behaviour is qualitatively 
unchanged even if the interband coupling V& is increased by an unrealistically large 
amount. 
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4. Conclusion 

'We have numerically investigated the electronic states of a linear crystal in an electric 
field within the two-band tightbinding model by changing the interband coupling. It 
is concluded that two interpenetrating Stark ladders are observed for strong electric 
fields irrespective of the strength of the interband couplings. These results are not 
trivial because of the existence of the interband coupling. The effect of the interband 
coupling is to mix the s and p components in the resulting wavefunction but this does 
not destroy the Stark ladders. 
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